

ISPT Advanced Chemical Propulsion (ACP)

Technology Objectives and Benefits

- Develop evolutionary improvements in chemical propulsion system performance that yield near-term products and directly impact payload mass fraction and cost.
 - Resulting in greater science
 - Producing higher performance than SOA chemical systems
 - Increasing the reliability of propulsion systems

Focus areas

- Lightweight / optimized components component, subsystem, and manufacturing technologies that offer measurable system level benefits
- Advanced propellants evaluation of high-energy storable propellants with enhanced performance for in-space application

ISPT ACP Task Areas

Lightweight/Optimized Components Tasks

- High Temperature Storable Bipropellant Engines
 - Performance optimization of existing storable bipropellant engine designs and demonstration of increased lsp >335s by leveraging high temperature thrust chamber material potential
- Ultra-lightweight Tank Technology (ULTT)
 - Optimization of COPVs to decrease the mass of propellant and pressurant tanks.
 - Acceptance / margin testing to increase design allowables and reduce risk

ISPT ACP Task Areas

Lightweight/Optimized Components Tasks (cont.)

- High Temperature Thrust Chamber Assembly (TCA) Materials
 - Investigation of materials and manufacturing processes, e.g. Vacuum Plasma Spray (VPS), to provide high temperature options for TCAs
- Active Pressurization & Mixture Ratio Control
 - Initial laboratory demonstration using non-hazardous fluids to simulate a small, deep space, pressure-fed propulsion system
 - Investigation to determine the accuracy of critical sensor technology in at the component and subsystem level

Advanced Propellants Tasks

- Advanced Ionic Monopropellants
 - Assessment of high performance monoprop potential through laboratory test and simulation

High Temperature Storable Bipropellant Engines

Objective

- Investigation of high temperature materials and thrust chamber manufacturing processes, such as VPS and Electro-form
- Optimization of high performance storable bipropellant engine (hot rocket)
 - Higher performance: >335s I_{sp} for NTO/N2H4 and >330s I_{sp} for NTO/MMH
 - Lower manufacturing cost with improved producibility and reliability
 - 3-10 yr mission life with >1hour operating time

Hot-fire test demonstration to reduce risk and facilitate transition directly to in-space

High Temperature Storable Bipropellant Engines

- Provide benefit for applications with medium to high ΔV and high reliability requirements
 - NASA robotic missions
 - Outer planet orbiters
 - Commercial missions such as apogee insertion of GEO COMSATs

Figure 2: Mass Savings Achievable for Europa Orbiter and GEO with High Performance, Storable Biprop Engines

Ultra-lightweight Tank Technology

Objectives

- Decrease the mass of propellant and pressurant tanks through the development of ultra-lightweight and lightweight propellant and pressurant tank technology for missions not requiring positive expulsion of propellants
- Develop a stress-rupture properties/design database that will significantly increase the allowable design stress for propellant and pressurant tanks
- Significantly reduce the tank and propulsion system dry mass for large science missions

T-1000 lightweight tank

Ultra-lightweight Tank Technology

Status

- Ultralight 16-in diameter aluminum lined tanks (COPVs) with a 2 kg dry mass and 30 kg capacity for N2H4, have been developed at JPL for MER [similar monolithic titanium MER tank mass - 5.8 kg]
- Non-destructive inspection methodology (such as the use of ultrasonics and sheerography) established to raise the technology maturation readiness level
- Investigated new materials and manufacturing methods

Ongoing

- Validation testing of ultra-lightweight MER tanks
- Stress-rupture testing and data acquisition
- New tank designs and ultra-lightweight applications
 - Xe propellant tanks
 - Cryogenic propellants
 - Diaphragm and linerless tanks

Ultra-lightweight Tank Technology (ULTT)

PI: NASA-JPL

Co I(s): NASA/MSFC, Carleton PTD, PSI, Luxfer

Ultra-lightweight Propellant Tanks

- Welded liners are required for ultralight propellant tanks to allow for PMD installation, but these welds present a significant technology challenge
 - During manufacture of ultralight hydrazine tanks for the MER program, there was a drop-out rate of 50% of liners due to indications in the TIG welds performed
- ◆ Three ultralight tanks were successfully manufactured for the MER program. Validation testing was conducted as a part of the FY06 Ultralight Tank Technology Development Task for the ISP Program
 - One of these three ultralight tanks was successfully tested, but two developed leaks during the test sequence
 - These tanks are scheduled to be examined, but it is currently suspected that the leaks are in the welds
- ◆ These weld anomalies during manufacture (and possibly validation testing) point to a need for further weld technology development to arrive at TRL 6 for the technology to be infused into flight projects

Active Pressurization and Mixture Ratio Control

Objective

 Development and laboratory demonstration of active pressurization and mixture ratio control (MRC) system resulting in substantial payload gains realized through reduction of percentage required for propellant reserves.

Potential Benefits

- Reduced inert mass by lessening mixture ratio variance residuals (4-6%)
- Increased availability for scientific payload mass
 - 10-15% increase in scientific payload for lower energy missions
 - Up to 40-56% increase in scientific payload for higher energy missions
- Detection and monitoring through balanced flow meter (BFM) and tank liquid volume instrument (TLVI) of very small leaks within propulsion system during all operational phases
- Elimination of mechanical regulators
- Reduced pressure drop by eliminating need for cavitating venturis
- Decreased probability of pressurization system failure
- Ability to detect and disregard failed sensors
- Integration with conventional spacecraft avionics
- Improved safety, reliability, and affordability for space access

National Aeronautics and Space

Active Pressurization and Mixture Ratio Control

Status

 Study results indicate development of balanced flow metering and sensor technology could increase scientific payload mass by 10% to 56%.

Current activities

- Investigation of alternate technologies that would facilitate an active pressurization and MRC system to reduce propellant wet mass
- Verifying the accuracy of balanced flow meter (BFM), tank liquid volume instrument (TLVI), optical mass gauging (OMG) and other supporting technology that would be implemented in an in-space MRC system
- Performing a laboratory demonstration with working fluids
 - Design and test key subsystem components
 - Determine system level impacts
- Leveraging other technology development to demonstrate and verify operational issues associated with cryogenic system mixture ratio control

ACPS Model: Overview

Spacecraft*

*All non-propulsive mass of system

Supports 8 different propellant combinations

Composite Propellant Tank Technology (1)

(1) New Frontiers Mission: Jupiter Polar Orbiter, VEEGA, 5.84 yr Trip Time, Mo = 1940 kg, ΔV = 2110 m/sec

Mission Evaluation $^{(1)}$ – NTO/N₂H₄

- Advanced propellant tanks provide significant benefits
- The optimum Pc increases for higher strength composites
- Pc increases alone provide small benefits
- (1) New Frontiers Mission: Jupiter Polar Orbiter, VEEGA, 5.84 yr Trip Time, Mo = 1940 kg, ΔV = 2110 m/sec

Influence of Chamber Pressure & MR Effect

Increasing either chamber pressure or mixture ratio increases the Isp of the engine (increases combustion chamber temperature as well)

(1) Data From NASA CR-195427, Vol. 1

Mission Evaluation (1) - NTO/N₂H₄

- ♦ Increasing mixture ratio has a positive effect on spacecraft mass, without tank technology additions
- ♦ Combining technologies (mixture ratio & tank) can increase payload significantly
- (1) New Frontiers Mission: Jupiter Polar Orbiter, VEEGA, 5.84 yr Trip Time, Mo = 1940 kg, ΔV = 2110 m/sec

N

Advanced Chemical Propulsion Strategy

Advanced Ionic Monopropellants

Ionic monopropellant assessment

- Experimental test series completed with 5 burns of AFM-315A propellant at MSFC
- Assessment of impact of advanced monopropellants on SMD missions is in work

♦ Motivation:

Hydrazine is considered the SOA in liquid monopropellants, yet there are new liquid monopropellant formulations in development with a number of improvements

- 'Green' propellants with very low vapor pressure and far fewer ground handling concerns/costs
- Specific impulse values 22-28% higher than hydrazine
- Density 45% greater
- Density-specific impulse 77% greater
- Delta-V 74% greater
- Lower freezing point

♦ Advantages:

Liquid monopropellant rocket motors over bipropellant motors*

- One propellant tank with a single feed system
- Simplified injection no need to worry about mixing of propellants
- Operation is less likely to vary with ambient temperatures
- Use of a single propellant may simplify field operations
- *Altman, D, Carter, J., Penner, S., and Summerfield, M., Liquid Propellant Rockets, 1960

High Performance Monopropellants

Vastly increased performance with new high energy density propellants

- Enabling larger payloads, smaller vehicles, and new mission capability
 - Highly reduced inert system mass compared to bipropellant
- Reducing the cost of exploring space
 - Smaller vehicle size and lower development costs
 - Low-toxicity, and vapor pressure 'green' propellant for lower operation cost

Theoretical Density Impulse (lb*sec/in3)
Isp code ran @ 50:1 expansion ratio/ 300 p.s.l. To 0.001 p.s.l.

Advanced Monopropellant Performance Payoffs

Microsatellite Trade Study

◆ Advanced monoprop performance can even exceed that of biprops

ICBM 4th Stage Trade Study

◆ Advanced monoprop performance allows increased range or payload over biprops

Other Lightweight and Optimized Components

Lightweight Foam Core Covers

PI: NASA-JPL; Co I: ARC

Ongoing / future work w/ FCS System:

- · Velocity impact testing and evaluation
- Thermal analysis of FCS systems
- Database and models development to guide design of FCS systems for spacecraft components
- FCS and MLI performance comparison
- Demonstration of the superiority of FCS for a Pressure Line and a Tank configuration
- Optimization and demonstration of FCS on pressure tank and line applications

Objectives

- Minimize the dependence on and possibly replace MLI w/Foam Core Shield (FCS) System:
 - Reduce Mass and bulk volume of installed propulsion components
 - Provide higher reliability protection against meteoroid damage
 - Provide ease of spacecraft integration

Other Advanced Propellants

Cryogenic Pressure Control in Orbit

PI: NASA/MSFC; Co-I: Boeing

- Anchored analytical modeling technique for application to various missions and vehicles
- Combined test & analytical capability to support virtually all future cryogenic propellant uses in orbit
- Analytical models and documentation of data

Objectives

- Develop an accurate computational thermodynamic & fluid-dynamic modeling capability for simulation of advanced cryogenic storage tanks in space.
- ◆ Techniques for pressure control within +/- 0.5 psi control band
- Demonstrate concept verification with normal gravity testing & analytical extrapolation to orbital environments

Benefits

- Deletion of APS for settling/venting, mission planning simplification
- Cross-cutting application to orbital cryo propulsion & storage
- Minimizes dependence on orbital experimentation

For additional information on **Advanced Chemical Propulsion** within the In-Space Propulsion Technology Program, please contact:

Leslie Alexander ACP Technology Area Manager

Phone: 256-544-6228

leslie.alexander-1@nasa.gov

Lee Jones

ACP Lead Systems Engineer

Phone: 256-544-1309

lee.w.jones@nasa.gov

Joan Hannan

ACP Technical and Project Support

Phone: 256-544-3990

joan.m.hannan@nasa.gov

www.nasa.gov

BACKUP CHARTS

Monopropellant for Large Engines - Concept Feasibility

Objective:

 Establish feasibility of using emerging class of high performance monopropellant for large launch engines

Payoff:

New monopropellant-based propulsion approach with,

- Highly reduced inert system mass compared to bipropellant
- Smaller vehicle size and lower development costs.

Potential Performance:

New, earth-storable monopropellant propulsion for,

- High performance; Dlsp> 25% Increase over NTO/MMH
- Low-toxicity, "green" propellant for lower operation cost

Milestones:

 Quality Function Deployment analysis of propellant Construct propellant injector and combustion test H/W Propellant safety, hazard, ignition/combustion tests

Monopropellant ignition test H/W equipped with PDFM feed system and quad impinging jet injector (also, full-cone spray injector)

Status:

Completed and delivered Quality Function Deployment based assessment of new propellant replacement technology

- Ignition test hardware components production/assembly completed
- Propellant candidate formulation and characterization in progress

Collaborations:

USAF AFRL (Edwards AFB CA) (Tom Hawkins, USAF/AFRL 661-275-5449)

Points of Contact:

John Blevins/MSFC, Greg Drake MSFC

MSFC Trade Study

•AF-M315 propellant in TSTO (2nd stage reaches ISS)

•Reduced tankage
mass drives
performance increase 150 ft

•Advanced propellant provides TSTO with greater payload

National Aeronautics and Space Administration